Ubiquinone and menaquinone electron carriers represent the yin and yang in the redox regulation of the ArcB sensor kinase.

نویسندگان

  • Adrián F Alvarez
  • Claudia Rodriguez
  • Dimitris Georgellis
چکیده

The Arc two-component system, comprising the ArcB sensor kinase and the ArcA response regulator, modulates the expression of numerous genes in response to respiratory growth conditions. Under aerobic growth conditions, the ubiquinone electron carriers were proposed to silence the kinase activity of ArcB by oxidizing two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here, we confirm the role of the ubiquinone electron carriers as the silencing signal of ArcB in vivo, we show that the redox potential of ArcB is about -41 mV, and we demonstrate that the menaquinols are required for proper ArcB activation upon a shift from aerobic to anaerobic growth conditions. Thus, an essential link in the Arc signal transduction pathway connecting the redox state of the quinone pool to the transcriptional apparatus is elucidated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ArcBA two-component system of Escherichia coli is regulated by the redox state of both the ubiquinone and the menaquinone pool.

ArcBA is a two-component regulatory system of Escherichia coli involved in sensing oxygen availability and the concomitant transcriptional regulation of oxidative and fermentative catabolism. Based on in vitro data, it has been postulated that the redox state of the ubiquinone pool is the determinant for ArcB kinase activity. Here we report on the in vivo regulation of ArcB activation, as deter...

متن کامل

Kinase Activity of ArcB from Escherichia coli Is Subject to Regulation by Both Ubiquinone and Demethylmenaquinone

Expression of the catabolic network in Escherichia coli is predominantly regulated, via oxygen availability, by the two-component system ArcBA. It has been shown that the kinase activity of ArcB is controlled by the redox state of two critical pairs of cysteines in dimers of the ArcB sensory kinase. Among the cellular components that control the redox state of these cysteines of ArcB are the qu...

متن کامل

All Three Endogenous Quinone Species of Escherichia coli Are Involved in Controlling the Activity of the Aerobic/Anaerobic Response Regulator ArcA

The enteron Escherichia coli is equipped with a branched electron transfer chain that mediates chemiosmotic electron transfer, that drives ATP synthesis. The components of this electron transfer chain couple the oxidation of available electron donors from cellular metabolism (e.g., NADH, succinate, lactate, formate, etc.) to the reduction of electron acceptors like oxygen, nitrate, fumarate, di...

متن کامل

Identification of a quinone-sensitive redox switch in the ArcB sensor kinase.

Escherichia coli senses and signals anoxic or low redox conditions in its growth environment by the Arc two-component system. Under anaerobic conditions, the ArcB sensor kinase autophosphorylates and transphosphorylates ArcA, a global transcriptional regulator that controls the expression of numerous operons involved in respiratory or fermentative metabolism. Under aerobic conditions, the kinas...

متن کامل

Transcription Factors and Their Metabolic Signals

a) The precise nature of the metabolic signal of ArcA is subject to a current debate. Alvarez et al. [1] report that ubiquinone is necessary to deactivate the sensor kinase ArcB and that menaquinole is necessary for activation of the sensor kinase ArcB. In contrast, Bekker et al. [3], Sharma et al. [14] report that also other quinone species control the activity of ArcB. To be able to capture t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 195 13  شماره 

صفحات  -

تاریخ انتشار 2013